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ABSTRACT 

In order for a team of several Automated Underwater Vehicles (AUVs), such as 

the ARIES, to operate cooperatively, operators require a cost effective position 

estimation method. Range only measurement (ROM) position estimation provides this 

and a means for the AUVs to identify each other's position. Position estimation usually 

requires at least two range measurements from known points to solve for a vessel's 

position. However, under certain conditions, one range only measurement can provide a 

simpler solution. This thesis proves ROM as a viable means of target tracking and 

position estimation. Determining the accuracy and observability of ROM serve as the 

primary focus. The ROM model setup and execution are discussed with specific 

attention given to the details of the Extended Kaiman Filter (EKF) and calculations 

required to determine the system's observability. 
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I.       INTRODUCTION 

A.  BACKGROUND 

The number of Third World/non-super power countries exercising their armed 

forces is increasing as border disputes, religious difference, and etc. fuel aggression. 

Although a majority of these nations have no ill intentions towards the United States, 

they may pose a very dangerous threat to U.S. vessels. By using minefields, a nation can 

stifle the use of a waterway. During the Persian Gulf War, mine fields were laid in the 

Persian Gulf by Iraqi forces. As a result of the mine layings, sea-lanes were severely 

restricted until proper mine clearing of frequented water ways could be completed. To 

clear minefields the Navy currently uses specialized ships, aircraft, and personnel. In any 

of the above methods, there is a very high risk of human life loss in the event of an 

accident. As a result, alternate means of conducting mine clearing tasks have been 

explored including the use of marine mammals and Autonomous Underwater Vehicles 

(AUVs) /Unmanned Underwater Vehicles (UUVs). Marine mammal systems have the 

drawbacks of limited numbers, and extensive, expensive, training requirements. 

Additionally, their use would likely cause opposition from the public. Fortunately, 

AUVs are designed to be low maintenance, low cost, 'expendable' vehicles designed to 

carry out the mission in its program. 

AUVs and UUVs are rapidly finding increased potential in military applications. 

From deep-water salvage to mine hunting/clearing operations, this new breed of vehicles 

provides a means for dangerous missions to be carried out without endangering 

personnel. More specifically, use of low cost AUVs in mine hunting/clearing operations 



appears specifically attractive since there is no risk of human life loss or damaging 

expensive ships. 

It is proposed that teams of AUVs working together may be used to search and 

identify large minefields. Such a team would consist of several "worker" vehicles and 

one "master" vehicle. The "worker" vehicles are expendable, low cost, AUVs designed 

to locate and possibly detonate enemy mines. The "master" vehicles are better equipped 

with more complex navigation, sonar, and communication suites. Pre-programmed 

"workers" would carry out their specific missions while the "master" vehicle would track 

and direct the drones to their specific waypoints. For a "master" vehicle to track several 

"workers", problems arise for a small, weight-conscious, AUV. Conventional position 

estimation in underwater applications usually consists of either active or passive towed 

array sonar. Unfortunately each application has drawbacks that preclude their use 

onboard the AUV. Active sonar would provide the most up to date and accurate 

positions of the worker vehicles. However, the transducer required to provide accurate 

positions of all the workers would be too large, require too much power, and be cost 

prohibitive for the size required in an AUV. Passive sonar is not a good choice for the 

AUV due to the time-late properties of its information. Additionally, vehicle mounted 

listening equipment that is of acceptable size, quality, and range is cost prohibitive, and 

use of a passive array requires handling equipment, which is not conducive to use in an 

AUV. Both passive and active tracking methods lack a means to explicitly discern mine- 

like objects from friendly AUVs. 

In an effort to conserve space and weight, a means of Range only Measurement 

(ROM) position estimation is proposed. Song (1999) has demonstrated the observability 



of ROM target tracking through use of simulations. Use of ROM tracking combines 

aspects of conventional active and passive tracking techniques. Like an active sensor, 

sound signals are emitted into the water using space and weight conscious acoustic 

modems transmit data through the water among vehicles in the team. Each signal 

contains "sent time", course, and identification information. This information enables the 

"master" vehicle to estimate the distance between sender and receiver, and to identify 

each sender. Upon receiving the signal from the "master" vehicle, the drone vehicle 

transmits its signal to "master" vehicle. When the "master" vehicle receives this signal, 

the distance between the two vehicles can be estimated by calculating time of travel for 

the signal. To ensure maximum accuracy, the "master" vehicle would use water property 

values attained from 'now' data. 

B.      SCOPE OF THIS WORK 

The overall problem of ROM position estimation is complex and diverse since it 

is usual that either range and bearing, or two range values are needed for position 

estimation. This study includes the development of the dynamic model and an Extended 

Kaiman Filter (EKF) to demonstrate the accuracy and viability of ROM techniques for 

position estimation. The purpose of this thesis is twofold: 

1. To prove the observability of ROM tracking techniques. 

2. To illustrate the accuracy of ROM tracking by comparing it to dead reckoning, 
a common means of simple navigation. 

Chapter II will provide the background of the Naval Postgraduate School (NPS) 

Acoustic  Reconnaissance  Interactive Exploratory  Server  (ARIES)  AUV  including 

navigation and sensor capabilities that are the basis of the "master" AUV's capabilities. 



Chapter m explains the theory and modeling of the simulation with detailed descriptions 

of the construction of the Extended Kaiman Filter (EKF), and the means of determining 

the system's observability. Chapter IV summarizes the results of the simulations. 

Chapter V presents the conclusions gathered from the results, and offers 

recommendations for continued research on this topic. 



II.     OVERVIEW OF ARIES 

A brief overview of the Naval Postgraduate School ARIES AUV shall provide 

some the working knowledge necessary to understand why certain assumptions were 

made, and to familiarize the reader with the AUV. 

ARIES weighs 225 kilograms and measures about three m long, 0.4 m wide and 

0.25 m high. The hull is constructed of one-quarter inch thick aluminum and forms the 

main pressure vessel that houses all electronics, computers, and batteries. External 

sensors are housed in the flooded fiberglass nose. Figure 2.1 shows the ARIES 

component layout. The vehicle has a top speed of three and one-half knots, which it may 

maintain for approximately four hours. The ARIES was primarily designed for shallow 

water operations and can operate safely down to 30 meters (Marco, Healey, 2000). 

A.      NAVIGATION 

The sensor suite used for navigation includes a RD Instruments Navigator 

Doppler Velocity Log (DVL) that also contains a magnetic compass. This instrument 

measures the vehicle ground speed, altitude, and magnetic heading. Angular rates and 

accelerations are measured using a 3-axis Motion Pak Inertial Motion Unit (MU). Data 

from the DVL and MU are fused using an EKF to provide a high quality dead reckoning 

solution while submerged. While surfaced, ARIES utilizes Differential Global 

Positioning System (DGPS) to correct any navigational errors accumulated during the 

submerged phases of a mission. 

The EKF in the ARIES' navigational suite may be tuned for optimal performance 

given a set of data. By fusing data input from the IMU / DVL / DGPS suite, biases, such 



as yaw rate bias and compass bias, can be identified and compensated for during 

underwater travel. Although this compensation can not completely correct for 

environmental biases, a relatively short surface time, for example, 10 seconds allows the 

filter to re-estimate biases, correct position estimates and continue with improved 

accuracy (Marco, Healey, 2000). 

For obstacle avoidance and target acquisition, the ARIES uses scanning or 

profiling sonar. The sonar heads can scan continuously through 360° of rotation or 

sweep through a defined angular sector (Marco, Healey, 2000). 

B. COMMUNICATIONS 

ARES is equipped with two types of modems. Radio modems are used for high 

bandwidth command/control and system monitoring while the vehicle is surfaced. An 

acoustic modem is used for low bandwidth communications while the vehicle is 

submerged. Additionally, the acoustic modem enables ARIES to exchange pertinent data 

with other AUVs that have compatible components (Marco, Healey, 2000). 

C. SERVER VEHICLE CONCEPT 

This thesis models the "master" vehicle the server of a two vehicle network. 

Proposals for using the NPS ARIES as a network server vehicle for multi-vehicle 

cooperative operations have surfaced due to the foreseen benefits. Use of the server 

vehicle as a data relay increases the range of communications of the underwater 

components of the network. Figure 2.2 describes the concept where in position 1, the 

ARIES communicates through its acoustic modem with multiple worker vehicles that are 



engaged in a search pattern. Position 2 shows the ARIES on the surface using a radio 

modem to report mission status of the worker vehicles (possibly vehicle positions, image 

snippets of targets, and hydrographic data) to the command ship. While surfaced the 

server vehicle can receive tactical decision re-tasking commands. Once the new orders 

are received, the vehicle will submerge and transmit, using its acoustic modem, new tasks 

to each worker vehicle. Using a server vehicle eliminates the complexity of deploying 

fixed buoys. Also, a vehicle of this type can achieve close proximity or rendezvous with 

the worker vehicles allowing for higher acoustic bandwidth data transfer (Marco, Healey, 

2000). 
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IE. RANGE ONLY MEASUREMENT (ROM) THEORY 

A. INTRODUCTION 

Only in the past few years has serious research in Range Only Measurement 

(ROM) target tracking been conducted. Seen as a means to reduce the cost of active 

target tracking, methods of ROM target tracking are increasingly being investigated. 

ROM target tracking previously lacked interest of researchers due to "the lack of firm 

analytical basis for system observability in addition to the lack of proper filter structures 

in the field of target tracking with ROM from one observer." (Song, 1999) 

Previous study also found that, "global system observability may not exist for the 

ROM target tracking; however, target state variables such as position, velocity, and 

acceleration can be estimated with a proper initial state estimate due to local system 

observability." (Song, 1999) If available, an initial state estimate can be obtained from 

previous target data, an update from an external source, i.e. a surface ship, or through the 

use of the "master" vehicle's active sonar. 

This study furthers the above by showing that accurate position estimates can be 

obtained without an accurate initial position, and that global observability for ROM target 

tracking is possible under certain conditions. 

B. PROBLEM FORMULATION 

To properly investigate the questions concerning ROM's accuracy and 

observability an appropriate model had to be constructed.  Since this tracking technique 
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may be used on an AUV, the NPS ARIES AUV provided the basis for model vehicles' 

capabilities and constraints. 

Modeling of the ROM system was done in computer based simulations using 

MATLAB due to its strong processing and presentation capabilities. Two simulations 

were developed; each models the same problem with a few changed parameters. 

Development of the simulation models was split into two sections: 

1. The dynamic model 

2. The Extended Kaiman Filter (EKF) 

The development and theory behind constructing the above sections will be explained in 

detail. 

1.      The Dynamic Model 

The simulations model a system consisting of two AUVs, a "master" and a 

"drone" vehicle operating in a zero current environment. The depths of the two vehicles 

were disregarded as this is assumed to be only a two dimensional problem. The "master" 

AUV navigation suite matches that of the AIRES described in the previous chapter, and 

is assumed to have accurate position, velocity, acceleration, and course data at all times. 

On the contrary, the "drone" vehicle possesses a rudimentary navigation suite consisting 

of an off the shelf compass and a bottom-mounted Doppler Sonar Velocity Log. 

Combining its compass heading, speed over ground, and an initial estimated position, the 

drone uses dead reckoning to estimate and update its position. 

For both simulations, almost ideal surroundings were used to model the 

environment.  As stated above, both simulations were modeled without current or other 

12 



external forces, i.e., wind, waves, etc. To introduce an error between the actual and the 

dead reckoning courses, the compass was assumed to have a constant bias of five degrees 

east.  The bias may seem artificially large, but testing with the AIRES has proven that 

this value represents actual bias errors experienced using comparable compasses.  Other 

environmental factors that would affect the vehicles' motion were made negligible in 

order to focus on the details more critical to this thesis. 

To provide the best conditions for ROM observability, careful selection of vehicle 

paths was necessary especially that of the "master" vehicle. In previous study, Dr. Taek 

Song found that: 

...if the tracker-target relative motion results in a constant bearing 
trajectory, or if the tracker is moving with a constant velocity or a constant 
acceleration, the system is not observable. This implies that the tracker 
motion should contain nonzero jerk to track a target with constant 
acceleration. (Song, 1998) 

Based on this observation, it was concluded that a circular path of some sort at maximum 

cruising speed would provide the best results by satisfying Dr. Song's criteria in tracking 

linear paths.   It was decided to make the "master'Vtracker vehicle's path a circle.   In 

doing this, the "master" AUV's bearing, opening, and closing rates relative to the "drone" 

AUV could be altered by changing its path radius.   In all cases, the "master" AUV's 

speed of one and one-half meters per second remained constant. 

A more straight forward task, the "drone'Vtarget vehicle path selection represents 

an AUV conducting a portion of its minesweeping search pattern at a constant speed of 

two-tenths meters per second.    For the Case One simulation, the "drone's" dead 

reckoning and actual positions start in the center of the "master" vehicles circular path. 

The desired and dead reckoning course is due north, course 000, but due to the compass 

13 



error the actual path taken by the "drone" is five degrees east or course 005. Figure 3.1 

illustrates the three paths described above. The Case Two simulation assumes the actual 

initial position of the "drone" is unknown, but located near the circular path of the 

"master" vehicle. This was done using MATLAB's "randn" function which produces 

random entries chosen from a normal distribution with a zero mean and a variance of one. 

As in the Case One simulation, the actual drone model moves from its initial position on 

a course of 005 due to its compass bias. The "drone's" dead reckoning position starts in 

the center of the "master" vehicle's path and follows the desired due north course. Figure 

3.2 shows the AUV paths in a typical Case Two simulation. 

For each simulation, a five element state vector in the Cartesian coordinates 

consisting of two "master" AUV position states, [X, Y], two "drone" AUV's position 

states, [xh yi], and the "drone" AUV's heading state, |>], represented the system. The 

continuous dynamic system is expressed as 

x = Ax+Bu 

where x = (X,Y,xl,y1,yf, 

0    co   0   0   0" "o" 
-co   0   0   0   0 0 

0     0   0   0   0 ,B = 0 

0     0   0   0   0 0.2 

0     0   0   0   0 _0_ 

and 

co -Rs/ 

m which Rs equals the radius in meters of the "master" AUV's continuous circular path 

at speed um. It was assumed that the tracking system dynamics are represented perfectly 

so that the process noise is not included in this analysis, (Song, 1999). 
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The next step in the problem formulation was converting the continuous dynamic 

system into a discrete dynamic system so it would be compatible with the EKF. 

MATLAB's continuous to discrete function, "c2d", eased the process considerably. The 

basics of the "c2d" algorithms are taken from the Control Toolbox and described here for 

background on the process. 

To convert a state space linear time invariant (LTI) system expressed as 

x = Ax + Bu 

into a discrete time state space system represented as 

xk+i = <P xk + T uk 

Uk = l 

MATLAB calculates the matrix exponential phi, 0(dt), as 

<S> = eAd' 

dt = the sample time increment 

and gamma, T, as a value that maps inputs to system response such that 

r =($-!) A'1 B. 

With the values of phi and gamma, recursive loops in the simulation program calculate 

the discrete vehicle states for each increment of the specified simulation time length, t. 

2.      Kaiman Filtering 

The Kaiman filter is a set of mathematical equations that provides an efficient 

recursive solution of the least-squares method. The filter is very powerful in several 

aspects: it supports estimations of past, present, and even future states, and it can do so 

even when the precise nature of the modeled system is unknown (Bishop and Welch, 
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1995). The algorithm computes the best estimates of system variables arising from 

sensor based data and the system model. Data from measurements along with the 

measurement model are used in a system model to provide the least squares fit estimate 

of system state, based on those measurements (Healey, An, Marco 1998). The Kaiman 

filter also assumes there is a zero mean error associated with the measurement data and 

estimation process. Based on a priori information, the modeler has the ability to adjust 

these error values to increase simulation accuracy. 

Due to the nonlinear nature of equations used in the simulations, an EKF was 

used to fuse the available data and provide position estimates. The system is a 

continuous time model of vehicle motion represented by 

m = f(s(t))+q(t); 
y(t) = h(x(t)) + v(t); 

where x(t)e Si5xl is the model state, / and h are continuous functions differentiable by 

x(t), and q and v are zero mean white noise excitations for the system and measurement 

models respectively (Healey, An, Marco, 1998). For the "master" AUV, the states are 

globally referenced longitude and latitude in meters, X and Y, the "drone" AUV states are 

also globally referenced, actual, longitude and latitude in meters, xi and yu and the 

heading angle referenced to North, y/ (Stinespring, 2000). The filter state vector, x, is 

made up of the above states, and the system is of order five. 

x = [x,Y,xx,y^J; 

The state model is related through the following set of functions representing 

dynamic relationships between states with assumptions embodying maneuvering models: 
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X=(üY 

Y = -(üX 

x, =0; 
Ji = 0; 
y = 0; 

To calculate the above state functions and solve the equations, the EKF takes the 

outputs from some of the "master" AUV's sensors measurements. The particular sensors 

that provide measurement data at that time are related to the filter state with the C matrix 

(Healey, An, Marco, 1998). This matrix is also used to convert estimated state vectors 

into the output matrix y. This matrix is in the form: 

yT=[Range, X, Y, Xj, y,, l//\; 

The equations, which are related in the C matrix and determine the output based on what 

the system is receiving from the sensors are as follows (Stinespring, 2000): 

yx = V(Xk-xlk)
2+(Yk-ylk)

2 = Range 

y2=X; 

y,=Y; 

y^=x\i 

y5-y\i 

y6=y, 

The output yi is range between the "master" and "drone" vehicles at the time 

increment k, y2,3 are the "master" vehicle's position components as recorded from DGPS, 

y4i5 are the "drone" position components as reported by their onboard position estimators, 

and y6 is the "drone" AUV's heading as reported from its compass.  The output is then 

used to refine the drone position based on the sensor outputs. It was assumed that ranges 

calculated by the acoustic modem signal travel times would be accurate. Ranges used by 

the EKF in the simulations are exact and utilize data that would not be available to the 

filter in real world situations. 
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The C matrix composition is the only difference in the EKF between the Case 

One and Case Two simulations. In the Case One simulation, the C matrix's construction 

relates data from all sensors channels to EKF. This simulation provides more data than 

the EKF needs to provide an accurate position estimate, but it served as excellent 

program to tune the EKF. In the Case Two simulation, the C matrix only allows channels 

one through three, and six to be used by the EKF. The remaining channels were made 

unusable to the EKF by zeroing the applicable coefficients in the C matrix. 

As stated before, the simulations represent near ideal systems. The system and 

measurement noise matrices of Q and R, respectively, were kept relatively small and can 

be considered to have little to no effect on the results for both simulations, except to 

determine the response time of the EKF. 

3.      Observability Determination 

EKF solution observability is probably the most important parameter in whether 

the data from the EKF is valid. Observability of the filter is essential in order to 

guarantee stable unbiased estimation errors of the state. A nonlinear filter such as the one 

used in the simulations, can be verified for observability locally through linearization of 

the/ and h functions (Healey, An, Marco, 1998). For a linearized model, 

x(t) = Ax(t) + q; 

y{t) = Cx{t) + v; 

of       ^ ^    oh where A=-±- and C = —-; 
dx ox 

the system is locally observable if the following observability matrix, O, has full rank of 

five. 



O = [C,CA',CA'2 ,CM'3 ,CM'4 ,CM'5 ] 

To calculate the total system observability, the integral of the observability grammian 

over the entire simulation time period, t, must be of full rank. 

rank(r0(^
T(x,O)CT(x)C(T)^x,O))dt)) = n; 

where n=length(x); 

Observability matrices of full rank in each simulation provide an excellent basis for 

establishing ROM's observability. 
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Figure 3.1 - AUV paths with known "drone" initial position 

20 



ÄUV  PATHS 

OS 

H 

400 

350 

300 

250 

200 

150 

100 

50 

0 

+   Desired Drone AUV Path 
-*-   Actual Drone AUV Path 
A   Master AUV Path 

j i i i L 

-250   -200   -150   -100    -50       0      50     100    150    200    250 
METERS 

Figure 3.2 - AUV paths with random, unknown "drone" initial position 

21 



THIS PAGE INTENTIONALLY LEFT BLANK 

22 



IV.    RESULTS OF SIMULATIONS 

A. INTRODUCTION 

During development and data collection, several server vehicle speeds and 

circular path radii were used. As a means to limit the amount of data collected, vehicle 

speeds were kept constant and turning capabilities were based on those of the AIRES 

AUV. 

Two simulation scenarios were modeled to test the ROM EKF. In the Case One 

scenario, the starting position of drone vehicle was constant and accurately passed to the 

EKF. Additionally, by modifying the C matrix, described in the previous chapter, the 

EKF used all the channels of measured sensor data to more accurately calculate the 

"drone" AUV's position. In the Case Two scenario, it was intended to model a system in 

which the starting position of the drone AUV was unknown, and it's position data was 

not available to the EKF. 

To further characterize the accuracy of the EKF, the simulations were run with 

"master" AUV path radii of 17, 30, 50, and 100 hundred meters. The speed of the 

"master" vehicle was kept constant at one and one-half meters per second, which is the 

AIRES' maximum speed. 

B. CASE ONE MODEL 

In this scenario, the "drone" AUV's actual and dead reckoning position started at 

the center "master" AUV's circular path. As the simulation progresses, the desired and 

actual paths of the "drone" AUV diverge due to compass bias as shown in Figure 3.1. 
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The C matrix composition allows the actual position and heading states of the "drone" 

vehicle to pass to the EKF. 

1. Observability 

In all Case One simulations, the system exhibited complete observability. The 

system's local observability matrix and observability grammian were always of full rank. 

This was to be expected since all of the filter states were updated by sensor data at every 

time increment. Figures 4.1 and 4.2 depict the local and total system observability, 

respectfully. These figures are applicable to all "master" AUV path radii conducted in 

this scenario. 

2. ROM Accuracy 

Configured to relate data from all measurement channels, the EKF made accurate 

position approximations, but a noticeable oscillatory error in the east-west/cross track 

accuracy plagued runs with larger "master" AUV paths. Further testing determined that 

the error was related to the speed in which the "master" AUV completed its circular path 

or in other words its cyclic speed. Since the "master" AUV's speed was kept fixed, 

modifying its path radius was the only means to effect cyclic speed. Decreasing the 

radius of "master" AUV's path increased its cyclic rate. Accuracy of the EKF improved 

dramatically as the cyclic rates of the "master" AUV were increased. The difference in 

position between the actual and estimated "drone" AUV position drops considerably as 

illustrated in the following figures. Figure 4.3 compares the actual east-west position to 

the EKF estimated position for a "master" AUV path radius of 100 meters.  Figure 4.4 
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compares the actual north-south position to the EKF estimated position for a "master" 

AUV path radius of 100 meters. Figures 4.5 through 4.10 show the same information as 

figures 4.4 and 4.5, for the three other "master" AUV paths. 

In comparing ROM position estimation to dead reckoning, ROM demonstrated 

itself as a superior. Unlike dead reckoning, which may produce unbounded position 

errors, ROM position estimation solutions converge if given sufficient time. For short 

periods of time, dead reckoning provided positions that rival the accuracy of ROM 

position estimation. However, for periods longer than approximately 1000 seconds, 

ROM position estimates mirror the "drone" AUV's actual position much more closely 

than dead reckoning. 

Figure 4.11 shows the paths of the "master" AUV, the "drone" AUV's desired 

and actual paths, and the ROM position estimate path. This figure clearly depicts ROM's 

accuracy over dead reckoning. To further show ROM's accuracy over dead reckoning, 

Figure 4.12 illustrates the normalized differences between the dead reckoning and actual 

positions and the ROM estimated and actual positions. Figure 4.13 shows the error of 

ROM position estimation states is bounded, and over time decreases as it converges. 

Figures 4.14 through 4.22 illustrate the information displayed in Figures 4.11 through 

4.13 for the other "master" AUV path radii. These figures clearly show that as the 

"master" AUV's cyclic rate increases, the accuracy of position estimation also increases. 

C.      CASE TWO MODEL 

It was intended for this portion of the simulation to model a scenario in which the 

"master" AUV did not have an accurate "drone" AUV initial position.    To further 
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simulate real world conditions, the only data made available to the EKF was the "drone" 

AUV range and heading data and the "master" AUV's position. 

1. Observability 

In all no dead-reckoning simulations, the rank of the local observability matrix at 

any point in time was four. Unlike the previous scenario, "drone" vehicle position was 

not one of the sensor measurements used to update the EKF. Therefore its states became 

locally unobservable. Using the observability grammian to calculate observability over 

the entire simulation time span, the number of observable states increased to five. 

Initially, the drone's ability to send its heading seems trivial. However, without this data 

it would not be possible for the observability grammian to reach full rank. Figures 4.23 

and 4.24 show the system's local observability and total observability, respectively. 

These figures are applicable to all "master" AUV path radii conducted in this scenario. 

2. ROM Accuracy 

Unlike the simulations with known initial "drone" positions, the EKF did not 

produce accurate estimates in the early stages of the simulations. It generally took one 

"master" AUV cycle before gaining acceptable position data. Initially, the EKF appears 

slow to adjust to the "drone's" actual position due to their proximity and minimal change 

in range, but once the range and range rate increase the EKF quickly "zeroes in" on the 

drone AUV's actual position. As demonstrated in the previous model, when the cyclic 

rate of the "master" AUV increased, the accuracy of the EKF also increased. 

Additionally, increasing the "master" AUV's cyclic rate allowed a faster acquisition of 
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the "drone" by the EKF. They become smaller and recover more quickly as cyclic rate 

increases. This is illustrated by characterizing the initial spikes in the EKF's position 

estimation prior to obtaining an accurate solution in the following figures. Figure 4.25 

compares the actual east-west position to the EKF estimated position for a "master" AUV 

path radius of 100 meters. Figure 4.26 compares the actual north-south position to the 

EKF estimated position for a "master" AUV path radius of 100 meters. Figures 4.27 

through 4.32 show the same information as figures 4.25 and 4.26, for the three other 

"master" AUV paths. The above figures show that as the "master" vehicle's path radius' 

decreases, the initial position error displayed by the spikes lessens and accurate position 

estimates occur quicker. 

Again, ROM target tracking proved to be a more accurate means of position 

estimation than dead reckoning for longer periods of time. For shorter periods of time, 

dead reckoning provided more accurate position estimations. Unlike the previous model, 

there was not a general time under which dead reckoning was more accurate. Since the 

EKF took approximately one cycle to build accurate position solutions, the time in which 

the dead reckoning solution was more accurate varied. 

Once again, decreasing the "master" AUV path radius increased the accuracy of 

the EKF position estimations. This effect is shown clearly in the following figures. Due 

to the random initial position generated by the program, figures representing any single 

"master" AUV path radius may not be taken from the same simulation. Figure 4.33 

shows the paths of the "master" AUV, and the "drone" AUV's dead reckoning, 

estimated, and actual paths. Figure 4.34 shows the normalized difference between dead 

reckoning and actual position and the normalized difference between ROM and actual 
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positions. Figure 4.35 shows the error between the actual and estimated position states of 

the "drone" AUV. Figures 4.36 through 4.44 illustrate the information displayed in 

Figures 4.33 through 4.35 for the other "master" AUV path radii. 
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Figure 4.1 - Local Observability for all "master" AUV path radii 
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Figure 4.2 - Total observability for all "master" AUV path radii 
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ACTUAL vs. ESTIMATED EAST-WEST POSITION 
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Figure 4.3 - East-west EKF position estimates vs. actual position for 100 meter 
"master" AUV path radius 

31 
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Figure 4.4 - North-south EKF position estimates vs. actual position for 100 meter 
"master" AUV path radius 
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Figure 4.5 - East-west EKF position estimates vs. actual position for 50 meter 
"master" AUV path radius 
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Figure 4.6 - North-south EKF position estimates vs. actual position for 50 meter 
"master" AUV path radius 
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Figure 4.7 - East-west EKF position estimates vs. actual position for 30 meter 
"master" AUV path radius 
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Figure 4.8 - North-south EKF position estimates vs. actual position for 30 meter 
"master" AUV path radius 
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ACTUAL  vs.    ESTIMATED   EAST-WEST   POSITION 
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Figure 4.9 - East-west EKF position estimates vs. actual position for 17 meter 
"master" AUV path radius 
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Figure 4.10 - North-south EKF position estimates vs. actual position for 17 meter 
"master" AUV path radius 
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Figure 4.11 - AUV paths over 3000 seconds 
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NORMALIZED  DIFFERENCES   IN POSITION AT   TIME   (T) 
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Figure 4.12 - Normalized differences between indicated and actual position for 100 
meter "master" AUV path radius 
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Figure 4.13 - Difference between actual and estimated position states for 100 meter 
"master" AUV path radius 
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Figure 4.14 - AUV paths over 2000 seconds 
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NORMALIZED  DIFFERENCES   IN  POSITION AT   TIME   (T) 
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Figure 4.15 - Normalized differences between indicated and actual position for 50 
meter "master" AUV path radius 
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DIFFERENCE BETWEEN ACTUAL AND ESTIMATED VALUES 
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Figure 4.16 - Difference between actual and estimated position states for 50 meter 
"master" AUV path radius 
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Figure 4.17 - AUV paths over 2000 seconds 
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NORMALIZED DIFFERENCES   IN POSITION AT  TIME   (T) 
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Figure 4.18 - Normalized differences between indicated and actual position for 30 
meter "master" AUV path radius 
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DIFFERENCE  BETWEEN ACTUAL AND  ESTIMATED VALUES 
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Figure 4.19 - Difference between actual and estimated position states for 30 meter 
"master" AUV path radius 
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Figure 4.20 - AUV paths over 2000 seconds 

48 



NORMALIZED  DIFFERENCES   IN  POSITION AT   TIME   (T) 
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Figure 4.21 - Normalized differences between indicated and actual position for 17 
meter "master" AUV path radius 
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DIFFERENCE BETWEEN ACTUAL AND ESTIMATED VALUES 
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Figure 4.22 - Difference between actual and estimated position states for 17 meter 
"master" AUV path radius 
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Figure 4.24 - Total observability for all "master" AUV path radii with no initial 
drone condition data 
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ACTUAL vs.   ESTIMATED EAST-WEST   POSITION 
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Figure 4.25 - East-west EKF position estimates vs. actual position for 100 meter 
"master" AUV path radius with no initial position data 
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ACTUAL vs.   ESTIMATED NORTH-SOUTH POSITION 
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Figure 4.26 - North-south EKF position estimates vs. actual position for 100 meter 
"master" AUV path radius with no initial position data 
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ACTUAL vs. ESTIMATED EAST-WEST POSITION 
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Figure 4.27 - East-west EKF position estimates vs. actual position for 50 meter 
"master" AUV path radius with no initial position data 
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ACTUAL vs. ESTIMATED NORTH-SOUTH POSITION 
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Figure 4.28 - North-south EKF position estimates vs. actual position for 50 meter 
"master" AUV path radius with no initial position data 
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ACTUAL  vs.   ESTIMATED  EAST-WIST   POSITION 
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Figure 4.29 - East-west EKF position estimates vs. actual position for 30 meter 
"master" AUV path radius with no initial position data 
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Figure 4.30 - North-south EKF position estimates vs. actual position for 30 meter 
"master" AUV path radius with no initial position data 
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Figure 4.31 - East-west EKF position estimates vs. actual position for 17 meter 
"master" AUV path radius with no initial position data 
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Figure 4.32 - North-south EKF position estimates vs. actual position for 17 meter 
"master" AUV path radius with no initial position data. 
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Figure 4.33 - AUV paths with no initial drone position data over 3000 seconds 
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Figure 4.34 - Normalized differences between indicated and actual position for 100 
meter "master" AUV path radius 
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Figure 4.35 - Difference between actual and estimated position states for 100 meter 
"master" AUV path radius 
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Figure 4.36 - AUV paths with no initial drone position data over 2000 seconds 
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NORMALIZED DIFFERENCES IN POSITION AT TIME (T) 
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Figure 4.37 - Normalized differences between indicated and actual position for 50 
meter "master" AUV path radius 
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Figure 4.38 - Difference between actual and estimated position states for 50 meter 
"master" AUV path radius 
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Figure 4.39 - AUV paths with no initial drone position data over 2000 seconds 
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NORMALIZED  DIFFERENCES   IN  POSITION AT  TIME   (T) 
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Figure 4.40 - Normalized differences between indicated and actual position for 30 
meter "master" AUV path radius 
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Figure 4.41 - Difference between actual and estimated position states for 30 meter 
"master" AUV path radius 
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Figure 4.42 - AUV paths with no initial drone position data over 2000 seconds 
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DIFFERENCE BETWEEN ACTUAL AND ESTIMATED VALUES 
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Figure 4.44 - Difference between actual and estimated position states for 17 meter 
"master" AUV path radius 
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V.     CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This work, through computer modeling and simulation, has shown that ROM 

position estimation will provide more accurate position estimates than dead reckoning. 

Results from this work also demonstrated that ROM position estimation produces 

observable results. From previous work, it was known that the server path must contain a 

non-zero acceleration motion to enable the EKF to find accurate, observable solutions 

(Song, 1999). However, the results also manifest that the accuracy of the solution is also 

dependent on the tracker vehicle's path. For the circular paths traveled by the master 

vehicle, larger non-zero accelerations translated to smaller circular paths higher bearing 

and range rates relative to the drone. As these rates increased, accuracy also increased. 

B. RECOMMENDATIONS 

The work and research completed in this thesis utilized simulations that were 

nearly ideal. Based on positive results gathered, further study should be made in both 

development of the EKF and the dynamic model. 

Further optimization of the EKF to reduce the oscillatory errors would greatly 

improve estimated position accuracy.   Also testing the EKF's accuracy when current and 

realistic noise values are modeled could prove very valuable in determining if this system 

could be used on an AUV. 

Future research to enhance the dynamic model should include simulations with 

two or more drones acting independently or simulations with one drone making course 
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changes. Lastly, a vital issue requiring more research is finding alternate master vehicle 

paths that create observable solutions and that patrol operation areas effectively. 
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APPENDIX A. MATLAB CODE ASSOCIATED WITH KNOWN 
INITIAL POSITION SIMULATION 

%Jason Alleyne 
%initpos.m 
%2 AUV Range only Measurement Simulation 
% Known Initial Drone Position 

clear 
clc 

%System dynamic model of worker measurement process for the range measurement 

u=1.5; 
Rs=100; 
w=u/Rs; 
psi=0; 
b=(pi/180)*5; 
q=[0.2;0;0]; 
Aw=[0,0,0;0,0,0;0,0,0]; 
xl=zeros(3,2000);xla=zeros(3,2000); 
xl(:,l)=[0;0;0];xla(:,l)=[0;0;0]; 

%server vehicle speed, u=1.5 m/s 

%Server vehicle path circular radius, and angular velocity 
%the worker vehicle ordered course 
%the worker vehicle compass bias, 5 degrees 
%the worker speed is .2 m/s 

%initializing the actual (xla) and dr (xl) position vectors 
%initial posits/states at the origin for the simulations. 

speed=zeros(l,2000);cornpass=zeros(l,2000); %initializing the speed and compass vectors 
dt=l; %time step of one second 
[p2,g2]=c2d(Aw,q,l); %continuous to discrete function for dr course 

fori=l:(length(xl)-l); 
xl(:,i+l)=p2*xl(:,i)+g2; 
speed(i)=g2(l);- 
compass(i)=x 1 (3 ,i)+b; 
f 1 (i)=speed(i)*cos(compass(i)); 
f2(i)=speed(i)*sin(compass(i)); 
q2=[fl(l,l);f2(l,l);0]; 
[P3,g3]=c2d(Aw,q2,l); 
xla(:,i+l)=p3*xla(:,i)+g3; 
V(i)=xl(l,i)-xla(l,i);X(i)=xl(2,i)-xla(2,i); 
DIFF(i)=sqrt(V(i)A2+X(i)A2); 

end 

%Initializes speed array for D.R. 
%Initializes compass array for D.R. 
%The actual speed/heading due to compass bias 
%The actual speed/heading due to compass bias 
%Used as propagation q matrix 
%C2D to convert continuous actual to discrete actual 
% Actual track of worker 

%circular motion of the server radius, Rs. 
% xO is the position vector [x,y] of the server 
% Set up circular path for server. Example is radius of 100 meters at w=0.015 rad/sec. 

%System dynamic model of server measurement process for the range measurement 

As=[0,w;-w,0];q=[l;l]; 
x0=zeros(2,2000);x0(:,l)=[Rs;0]; 
[p,g]=c2d(As,q,l); 
fori=l:(length(xO)-l); 

x0(:,i+l)=p*x0(:,i); 
R(i)=sqrt((xO(l,i)-xl(l,i))A2+(xO(2,i)-xl(2,i))A2);    %Range between DR worker position and server 

%vehicle; 
Ra(i)=sqrt((xO(l,i)-xla(l,i))A2+(xO(2,i)-xla(2,i))A2); %actual Range between worker and server vehicles; 

end 
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figure(2),clf,plot(xO(2,:),xO(l,:),'b-',xl(2,:),xl(l,:)>'g.)>grid 
xlabel(\fontname{ courier new}\fontsize{ 12}\bf METERS'); 
ylabel(\fontname{ courier new}\fontsize{ 12}\bf METERS'); 
title(\fbntname{courier new}\fontsize{ 12}\bf AUV PATHS'); 
legend(Master AUV Path',Desired Drone AUV Path),axis equal 

figure(3),clf,plot(R,'g*'),grid 
hold;plot(Ra,b-'); 
xlabel(\fontname{ courier new}\fontsize{ 12}\bf TIME (SEC)*); 
ylabel("tfontname{courier new}\fontsize{ 12}\bf RANGE (METERS)7); 
title(\fontname{courier new}\fontsize{ 12}\bf ACTUAL VS DEAD RECKONING RANGE1); 
legendCDead Reckoning Range', Actual Range',0) 

figure(4),clf,plot(xl(2,:),xl(l,:),'g.-',xla(2,:),xla(l,:),,r*',x0(2,:),x0(l,:),'b-'),grid,axis equal, 
xlabelC\fontname{ courier new}\fontsize{ 12}\bf METERS'); 
ylabel(\fontname{ courier newj\fontsize{ 12 }\bf METERS'); 
titleC\fontname{courier new}\fontsize{ 12}\bf AUV PATHS); 
legend(Desired Drone AUV Path', Actual Drone AUV Path'.Master AUV Path',0) 

%build an Kaiman filter for master vehicle 

% Position Estimator based on data stream, R, 
%> 
endSample=length(Ra);startSample=l; 
y=[Ra;xO(l,l:length(Ra));xO(2,l:length(Ra));xla(l,l:length(Ra));xla(2,l:length(Ra));xla(3,l:length(Ra))]; 
x=zeros(5,endSample);err=zeros(6,endSample); 
s=startSample; 
x(:,s)=[x0(l,l),x0(2,l),0,0,0]'; 

%MANEUVERING AND CURRENT TIME CONSTANTS 

taul=0; 
tau2=0; 

A=[As,zeros(2,3);zeros(3,2),Aw]; 

C=zeros(6,5); %Initializes the C matrix 
C(2,1)=1;C(3,2)=1;C(4,3)=1;C(5,4)=1;C(6,5)=1;       %Matches measurement states (y) to output states (x) 

Ra(l)=sqrt((xO(l,l)-xla(l,l))A2+(xO(2,l)-xla(2,l))A2); 

% C matrix local is dg/dx 
C(l,3)=-(x0(l,l)-xla(l,l))/Ra(l); 
C( 1,4)=-(x0(2,1 )-x 1 a(2,1 ))/Ra( 1); 
C(l,l)=(xO(l,l)-xla(l,l))/Ra(l); 
C( 1,2)=(x0(2,1 )-x 1 a(2,1 ))/Ra( 1); 

%Initial B matrix 
ql=0.01; %variance on X, mA2 
q2=0.01; % variance on Y, mA2 
q3=0.1; % variance on x 1 a 
q4=.l; %variance on yla, rad/s)A2 
q5=0.0001; %slow bias convergence 
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B=[ql;q2;q3;q4;q5]/100; 

Q=diag(B); %system noise 

nul=0.01;nu2=.001;nu3=.001;nu4=2000;nu5=2000;nu6=.02; 

gnu=[nu 1 ;nu2;nu3;nu4;nu5 ;nu6]; 

R=diag(gnu)* 1; %measurement noise 
Gram=zeros(5,5); "^initialization of observability grammian matrix 

% measured data at old time, new_before means model predicted value 

p_old_after=eye(5); 
delx_old_after=zeros(5,1); 

g=ones(6,1) ;psave=zeros(5 ,length(R)); 

dt=l ;phi=expm(A*dt); t=0:1 :endSample-l; 

for i=startSample:(endSample-l); 

%compute linearized PHI matrix using updated A 

%reset initial state 

x_old_after=x(:,i); 

% nonlinear state propagation 

[x_new_before]=phi*x_old_after; 

%error covariance propagation 

p_new_before=phi*p_old_after*phi' + Q;     %new gain calculation using linearized new 
%C matrix and current state error 
%co variances. 

Reformulate the innovation using nonlinear output propagation 
%as compared to new sampled data from measurements 

yhat=output3(x_new_before); 
err(:,i+l)=(y(:,i+l) - yhat); 

G=p_new_before*C'*inv(C*p_new_before*C + R); % Kaiman Gain 
p_old_after=[eye(5) - G*C]*p_new_before; 
psave(: ,i+1 )=diag(p_old_after); 

cpc=inv(C*p_old_after*C'+R); 
rel(i+l)=err(:,i+l)'*cpc*err(:,i+l); 

x_new_after=x_new_before + G*err(:,i+1); 
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%carry new state into next update 

x(:,i+l )=x_new_after; 

C=zeros(6,5); 
C(2,1)=1;C(3,2)=1;C(4,3)=1;C(5,4)=1;C(6,5)=1;       %Current settings make all target states observable to 

%filter. 

% Cmatrix local is dg/dx 

C(l,3)=-(x(l,i)-x(3,i))/y(l,i); 
C(l,4)=-(x(2,i)-x(4,i))/y(l,i); 
C(l,l)=-C(l,3); 
C(l,2)=-C(l,4); 
0(i)=rank([C',phi'*Cl); 
U(i)=x(4,i)-y(5,i);T(i)=x(3,i)-y(4,i); 
diff(i)=sqrt(U(i)A2+T(i)A2); 
Gram=Gram+phi'*C'*inv(R)*C*phi; 
Gramrank(i)=rank(Gram); 
end; 

figure(5),clf,plot(0,'b*},grid,zoom %Local Observability indicates # of observable states at a point in 
%time. 

xlabel(\fontname{courier new}\fontsize{ 12}\bf TIME (SEC)5); 
ylabel(\fontname{courier new}\fontsize{ 12}\bf OBSERVABLE STATES'); 
titleCtfontname{courier new}\fontsize{ 12}\bf LOCAL SYSTEM OBSERVABILITY} 

figure(6)>clf,pIot(Gramrank,'b*},grid,zoom %Observability Grammian Rank indicates # of observable 
%states over period of the simulation 

xlabel(\fontname{courier new}\fontsize{ 12}\bf TIME (SEC)'); 
ylabeie\fontname{courier new}\fontsize{ 12}\bf OBSERVABLE STATES}; 
titIeCtfontname{courier new}\fontsize{ 12}\bf TOTAL SYSTEM OBSERVABILITY7) 

figure(7),clf,plot(t,rel,'b*'),grid,zoom 

figure(8),clf,plot(t,x(4,:),'b*',t>xla(2,l:1999),'m.},grid %East-West position comparison 
xlabel(\fontname{courier new}\fontsize{ 12}\bf TIME (SEC)}; 
ylabelC\fontname{ courier new}\fontsize{ 12 }\bf METERS'); 
titleC\fontname{courier new}\fontsize{ 12}\bf ACTUAL vs. ESTIMATED EAST-WEST POSITION}; 
legend(Estimated position', Actual position',0) 

figure(9),clf,plot(t,x(3,:),'b*',t,xla(l,l:1999)>'m.'),grid %North-south position comparison 
xlabel(\fontname{courier new}\fontsize{ 12}\bf TIME (SEC)}; 
ylabeI(\fontname{ courier new}\fontsize{ 12 }\bf METERS}; 
title(\fontname{courier new}\fontsize{ 12}\bf ACTUAL vs. ESTIMATED NORTH-SOUTH POSITION}; 
legend(Estimated position', Actual position',0) 

figure(10),clf,plot(x(2,:),x(l,:)),grid,hold, 
plot(x(4,:),x(3,:),,r.},plot(xl(2,:),xl(l>:),'m.},plot(xla(2,l:1999),xla(l,l:1999),'c.};zoom,holdoff,axis 
equal 
xlabel(\fontname{ courier new}\fontsize{ 12 }\bf METERS}; 
ylabel(\fontname{ courier new}\fontsize{ 12}\bf METERS}; 
titleOfontname{ courier new}\fontsize{ 12}\bf AUV PATHS}; 
legend(Master AUV Path'.Estimated Drone Path'.Desired Drone AUV Path', Actual Drone AUV Path',0) 
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figure(l l),clf,plot(err'),grid, 
xlabel(\fbntnarne{ courier new}\fontsize{ 12}\bf TIME (SEC)"); 
ylabel(\fbntname{ courier new}\fontsize{ 12}\bf METERS'); 
title(\fontname{courier new}\fontsize{ 12}\bf DIFFERENCE BETWEEN ACTUAL AND ESTIMATED 
VALUES'); 
legendCRange', Server North-South','Server East-West', Worker North-South', Worker East-West', Worker 
Heading',0) 

figure(12),clf,plot(diff,'r-'),grid,hold,plot(DIFF,'b.'),hoIdoff 
xlabel(\fontname{courier new}\fontsize{ 12}\bf TIME (SEC)'); 
ylabel(\fontname{courier new}\fontsize{ 12 }\bf METERS'); 
title(\fontname{courier new}\fontsize{ 12}\bf NORMALIZED DIFFERENCES IN POSITION AT TIME 
my, 
legendCROM Position Estimate'.Dead Reckoning',0) 
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APPENDIX B. MATLAB CODE ASSOCIATED WITH UNKNOWN 
INITIAL POSITION SIMULATION 

%Jason Alleyne 
%no-initpos.m 
%2 AUV Range only Measurement Simulation 
%Unknown Initial Drone Position 

clear 
clc 

%System dynamic model of worker measurement process for the range measurement 

u=1.5; 
Rs=100;w=u/Rs; 
psi=0; 
b=(pi/180)*5; 
q=[0.2;0;0]; 
Aw=[0,0,0;0)0,0;0,0,0]; 
xl=zeros(3,2000);xla=zeros(3,2000); 

%server vehicle speed, u=1.5 m/s 
%Server vehicle path circular radius, and angular velocity 
%the worker vehicle ordered course 
%the worker vehicle compass bias, 5 degrees 
%the worker speed is .2 m/s 

%initializing the actual (xla) and dr (xl) position vectors 
xl(:,l)=[0;0;0];l=randn([2,l])*Rs;xla(:,l)=[l;0]; 
initial value. 
speed=zeros( 1,2000);compass=zeros( 1,2000); 
dt=l; 

.[P2,g2]=c2d(Aw,q,l); 

fori=l:(length(xl)-l); 
xl(:,i+l)=p2*xl(:,i)+g2; 
speed(i)=g2(l); 
compass(i)=xl(3,i)+b; 
f 1 (i)=speed(i)*cos(compass(i)); 
f2(i)=speed(i)*sin(compass(i)); 
q2=[fl(l,l);f2(l,l);0]; 
[P3,g3]=c2d(Aw,q2,D; 
xla(:,i+l)=p3*xla(:,i)+g3; 
V(i)=xl(l,i)-xla(l,i);X(i)=xl(2,i)-xla(2,i); 
DIFF(i)=sqrt(V(i)A2+X(i)A2); 

end 

%The actual position is unknown, and is a random 

%initializing the speed and compass vectors 
%time step of one second 
%continuous to discrete function for dr course 

%Initializes speed array for D.R. 
%Initializes compass array for D.R. 
%is the actual speed/heading due to compass bias 
%is the actual speed/heading due to compass bias 
%used as propagation q matrix 
%C2D to convert continuous actual to discrete actual 
%actual track of worker 

%circular motion of the server radius, Rs. 
% xO is the position vector [x,y] of the server 
% Set up circular path for server. Example is radius of 100 meteres at w=0.015 rad/sec. 

%System dynamic model of server measurement process for the range measurement 

As=[0,w;-w,0];q=[l;l]; 
x0=zeros(2,2000);x0(:,l)=[Rs;0]; 
[p,g]=c2d(As,q,l); 
fori=l:(length(x0)-l); 

x0(:,i+l)=p*x0(:,i); 
R(i)=sqrt((xO(l,i)-xl(l,i))A2+(xO(2,i)-xl(2,i))A2);     %Range between estimated worker position and 

%server vehicle; 
Ra(i)=sqrt((xO(l,i)-xla(l,i))A2+(xO(2,i)-xla(2,i))A2); %actual Range between worker and server vehicles 

end 
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figure(l),clf,plot(x0(2,:),x0(l,:),'b-,,xl(2,:),xl(l,:),'g.),grid 
xlabel(\fontname{ courier new}\fontsize{ 12}\bf METERS'); 
ylabel(Mbntname{ courier new}\fontsize{ 12}\bf METERS'); 
title(\fontname{ courier new}\fontsize{ 12}\bf AUV PATHS'); 
legend(Master AUV Path'.Desired Drone AUV Path),axis equal 

figure(2),clf,plot(R,'g*'),grid 
hold;plot(Ra,'b-'); 
xlabel(\fontname{courier new}\fontsize{ 12}\bf TIME (SEC)1); 
yIabel(\fontname{courier new}\fontsize{ 12}\bf RANGE (METERS)"); 
title(\fontname{courier new}\fontsize{ 12}\bf ACTUAL VS DEAD RECKONING RANGE1); 
legend(Dead Reckoning Range', Actual Range',0) 

figure(3),clf;plot(xl(2,:),xl(l,:),'g-.',xla(2,:))xla(l,:))'r*',x0(2,:),x0(l,:),'bngrid,axis equal, 
xlabelCtfontname{ courier new}\fontsize{ 12}\bf METERS'); 
ylabel(\fontname{ courier new}\fontsize{ 12}\bf METERS); 
title(\fontname{courier new}\fontsize{ 12}\bf AUV PATHS'); 
legend(Desired Drone AUV Path', Actual Drone AUV Path',Master AUV Path',0) 

%build a Kaiman filter for server vehicle 

% Position Estimator based on data stream, R, 
%   
endSample=length(Ra);startSample=l; 
y=[Ra;xO(l,l:length(Ra));xO(2,l:length(Ra));xla(l,l:length(Ra));xla(2,l:length(Ra));xla(3,l:length(Ra))]; 
x=zeros(5,endSample);err=zeros(6,endSample); 
s=startS ample; 
x(:,s)=[x0(l,l),x0(2,l),0,0,0]'; 

«^MANEUVERING AND CURRENT TIME CONSTANTS 

taul=0; 
tau2=0; 

A=[As,zeros(2,3);zeros(3,2),Aw]; 

C=zeros(6,5); %Initializes the C matrix 
C(2,1)=1;C(3,2)=1;C(4,3)=0;C(5,4)=0;C(6,5)=0;       %Matches measurement states (y) to output states (x) 

%with drone states unobservable 

Ra( 1 )=sqrt((x0( 1,1 )-x 1 a( 1,1)) A2+(x0(2,1 )-x 1 a(2,1 ))A2); 

% Cmatrix local is dg/dx 
C(l,3)=-(x0(l,l)-xla(l,l))/Ra(l); 
C( 1,4)=-(x0(2,1 )-xl a(2,1 ))/Ra( 1); 
C(l,l)=(xO(l,l)-xla(l,l))/Ra(l); 
C(l,2)=(x0(2,l)-xla(2,l))/Ra(l); 

%Initial B matrix 
q 1=0 01; %variance on X, mA2 
q2=0 01; % variance on Y, mA2 
q3_0 i; %variance on xla 
q4_ j.' %variance on yla, rad/s)A2 
q5=0.0001; %slow bias convergence 
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B=[ql;q2;q3;q4;q5]/100; 

Q=diag(B); 

%system noise 

nu 1=0.01 ;nu2=.001 ;nu3=.001 ;nu4=2000;nu5=2000;nu6=.02; 

gnu=[nu 1 ;nu2;nu3 ;nu4;nu5 ;nu6]; 

R=diag(gnu)*l; 
Gram=zeros(5,5); 

%measurement noise 
"^initialization of observability grammian matrix 

% measured data at old time, new_before means model predicted value 

p_old_after=eye(5); 
delx_old_after=zeros(5,1); 

g=ones(6,l);psave=zeros(5,length(R)); 

dt= 1 ;phi=expm(A*dt); t=0:1 rendSample-1; 

for i=startSample:(endSample-l); 

%compute linearized PHI matrix using updated A 

%reset initial state 

x_old_after=x(:,i); 

% nonlinear state propagation 

[x_new_before]=phi*x_old_after; 

%error covariance propagation 

p_new_before=phi*p_old_after*phi' + Q; %new gain calculation using 
%linearized new C matrix and 
%current state error covariances. 

%formulate the innovation using nonlinear output propagation 
%as compared to new sampled data from measurements 

yhat=output3(x_new_before); 
err(:,i+l)=(y(:,i+l)-yhat); 

G=p_new_before*C'*inv(C*p_new_before*C + R); % Kaiman Gain 
p_old_after=[eye(5) - G*C]*p_new_before; 
psave(:,i+1 )=diag(p_old_after); 

cpc=inv(C*p_old_after*C'+R); 
rel(i+l)=err(:,i+l)'*cpc*err(:,i+l); 

x_new_after=x_new_before + G*err(:,i+1); 
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%carry new state into next update 

x(: ,i+1 )=x_ne w_after; 

C=zeros(6,5); 
C(2,1)=1;C(3,2)=1;C(4,3)=0;C(5,4)=0;C(6,5)=1; 

% Cmatrix local is dg/dx 

C(l,3)=-(x(l,i)-x(3,i))/y(l,i); 
C(l,4)=-(x(2,i)-x(4,i))/y(l,i); 
C(l,l)=-C(l,3); 
C(l,2)=-C(l,4); 
0(i)=rank([C',phi'*C]); 
U(i)=x(4,i)-y(5,i);T(i)=x(3,i)-y(4,i); 
diff(i)=sqrt(U(i)A2+T(i)A2); 
Gran^Gram+phPCTnvW^phi; 
Gramrank(i)=rank(Gram); 
end; 

fi<mre(4),clf,plot(0,'b*%grid %Local Observability indicates # of observable states at a point in time. 
xlabel(\fontname{courier new}\fontsize{ 12}\bf TIME (SEC)); 
ylabelCtfontnamefcourier new}\fontsize{ 12}\bf OBSERVABLE STATES'); 
titleOfontname{ courier new}\fontsize{ 12}\bf LOCAL SYSTEM OBSERVABILITY) 

figure(5),cIf,plot(Gramrank,'b*'),grid,axis([0 length(xO) 4 6]) %Observability Grammian Rank indicates 
%of observable states over period of the 
%simulation 

xlabel(\fontname{courier new}\fontsize{ 12}\bf TIME (SEC)'); 
ylabel(\fontname{courier new}\fontsize{ 12}\bf OBSERVABLE STATES'); 
title(\fontname{courier new}\fontsize{ 12}\bf TOTAL SYSTEM OBSERVABILITY') 

figure(6),clf,plot(t,rel,'b*'),grid,zoom 

figure(7),clf,plot(t,x(4,:),'b*',t,xla(2,l:1999),'m.'),grid %East-West position comparison 
xlabel(\fontname{courier new}\fontsize{ 12}\bf TIME (SEC)); 
ylabel(\fontname{ courier new}\fontsize{ 12 j\bf METERS'); 
title(\fontname{courier new}\fontsize{ 12}\bf ACTUAL vs. ESTIMATED EAST-WEST POSITION1); 
legend(Estimated position','Actual position',0) 

figure(8),clf,plot(t,x(3,:),'b*',t,xla(l,l:1999),'m.'),grid %North-south position comparison 
xlabel(\fontname{courier new}\fontsize{ 12}\bf TIME (SEC)O; 
ylabel(\fontname{ courier new}\fontsize{ 12}\bf METERS'); 
title^ontname{courier new}\fontsize{ 12}\bf ACTUAL vs. ESTIMATED NORTH-SOUTH POSITION'); 
legend(Estimated position', Actual position',0) 

figure(9),clf,plot(x(2,:),x(l,:)),grid,hold, 
plot(x(4,:),x(3,:),'r.'),plot(xl(2,:),xl(l,:),'m.'),plot(xla(2,l:1999),xla(l,l:1999),'c.');holdoff,axis 

equal,zoom 
xlabel(\fontname{ courier new}\fontsize{ 12 }\bf METERS'); 
ylabeK'tfontnamej courier new}\fontsize{ 12 }\bf METERS'); 
title(\fontname{ courier new}\fontsize{ 12}\bf AUV PATHS'); 
legend(Master AUV Path',Estimated Drone Path',Desired Drone AUV Path'.'Actual Drone AUV Path',0) 
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figureC 10),clf,plot(erO,grid, 
xlabel(\fontname{courier new}\fontsize{ 12}\bf TIME (SEC)*); 
ylabel(\fontname{ courier new}\fontsize{ 12}\bf METERS'); 
tMe(\fontname{courier new}\fontsize{ 12}\bf DIFFERENCE BETWEEN ACTUAL AND ESTIMATED 
VALUES'); 
legendCRange','Server North-South',Server East-West', Worker North-South', Worker East-West', Worker 
Heading',0) 

figure(ll),clf,plot(diff,'r-),grid,hold,plot(DIFF,TD.'),hold off 
xlabel(\fontname{courier new}\fontsize{ 12}\bf TIME (SEC)7); 
ylabel(\fontname{courier new}\fontsize{ 12}\bf METERS'); 
title(\fontname{ courier new}\fontsize{ 12}\bf NORMALIZED DIFFERENCES IN POSITION AT TIME 
(m 
legendCROM Position Estimate',Dead Reckoning',0) 
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APPENDIX C. MATLAB CODE ASSOCIATED WITH EXTENDED 
KAIMAN FILTER MEASUREMENT DATA FUSION 

%Jason Alleyne 
%Output3.m 
%Function required for ROM EKF used in initpos.m and no-initpos.m 

function [yhat]=output3(xoId); 

x0=xold(2); 
yO=xold(l); 
xl=xold(4); 
yl=xold(3); 
psil=xold(5);      %ensure the states are in the same order as in main program 

Rhat=sqrt((xO-xl)A2+(yO-yl)A2); 
xOhat=xO; 
yOhat=yO; 

yhat=[Rhat;yO;xO;y 1 ;x 1 ;psi 1 ]; 
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